首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12403篇
  免费   1558篇
  国内免费   2566篇
测绘学   321篇
大气科学   1499篇
地球物理   1324篇
地质学   5427篇
海洋学   930篇
天文学   5081篇
综合类   499篇
自然地理   1446篇
  2024年   30篇
  2023年   128篇
  2022年   351篇
  2021年   409篇
  2020年   416篇
  2019年   493篇
  2018年   406篇
  2017年   360篇
  2016年   367篇
  2015年   430篇
  2014年   687篇
  2013年   736篇
  2012年   743篇
  2011年   823篇
  2010年   891篇
  2009年   1209篇
  2008年   1112篇
  2007年   1024篇
  2006年   1009篇
  2005年   836篇
  2004年   689篇
  2003年   606篇
  2002年   499篇
  2001年   470篇
  2000年   384篇
  1999年   360篇
  1998年   238篇
  1997年   120篇
  1996年   118篇
  1995年   81篇
  1994年   76篇
  1993年   89篇
  1992年   39篇
  1991年   52篇
  1990年   43篇
  1989年   31篇
  1988年   29篇
  1987年   7篇
  1986年   18篇
  1985年   21篇
  1984年   19篇
  1983年   15篇
  1982年   15篇
  1981年   6篇
  1980年   11篇
  1979年   2篇
  1978年   6篇
  1977年   15篇
  1954年   3篇
  1875年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
We present results from a new simulation code that accounts for the evolution of the reservoirs of carbon dioxide on Mars, from its early years to the present. We establish a baseline model parameter set that produces results compatible with the present (i.e., Patm?6.5 mbar with permanent CO2 ice cap) for a wide range of initial inventories. We find that the initial inventory of CO2 broadly determines the evolutionary course of the reservoirs of CO2. The reservoirs include the atmosphere, ice cap, adsorbed CO2 in the regolith, and carbonate rocks. We track the evolution of the free inventory: the atmosphere, ice cap and regolith. Simulations begin at 4.53 Gyr before present with a rapid loss of free inventory to space in the early Noachian. Models that assume a relatively small initial inventory (?5 bar) have pronounced minima in the free inventory of CO2 toward the end of the Noachian. Under baseline parameters, initial inventories below ∼4.5 bar result in a catastrophic loss of the free inventory to space. The current free inventory would be then determined by the balance between outgassing, sputtering losses and chemical weathering following the end of the late bombardment. We call these “thin” models. They generically predict small current free inventories in line with expectations of a small present CO2 ice cap. For “thick” models, with initial inventories ?5 bar, a surplus of 300-700 mbar of free CO2 remains during the late-Noachian. The histories of free inventory in time for thick models tend to converge within the last 3.5 Gyr toward a present with an ice cap plus atmospheric inventory of about 100 mbar. For thick models, the convergence is largely due to the effects of chemical weathering, which draws down higher free inventories more rapidly than the low. Thus, thick models have ?450 mbar carbonate reservoirs, while thin models have ?200 mbar. Though both thick and thin scenarios can reproduce the current atmospheric pressure, the thick models imply a relatively large current CO2 ice cap and thin models, little or none. While the sublimation of a massive cap at a high obliquity would create a climate swing of greenhouse warming for thick models, under the thin model, mean temperatures and pressures would be essentially unaffected by increases in obliquity.  相似文献   
22.
1 Introduction The Qinghai-Tibet Plateau, known as the highest plateau with the most complex topography in the world, covers an area of more than 200km2, with a mean elevation of more than 4000m a.s.l. (Ye and Gao, 1979). Surrounded by the Earth’s highest mountains, such as the Himalayas, Pamir, Kunlun Mountains, the plateau plays a significant role in climate change in China even in the world, thus attracted great attention of researchers. Up to now, many achievements have been gained by…  相似文献   
23.
24.
25.
26.
27.
28.
Man Hoi Lee  S.J. Peale 《Icarus》2006,184(2):573-583
Two small satellites of Pluto, S/2005 P1 (hereafter P1) and S/2005 P2 (hereafter P2), have recently been discovered outside the orbit of Charon, and their orbits are nearly circular and nearly coplanar with that of Charon. Because the mass ratio of Charon-Pluto is ∼0.1, the orbits of P2 and P1 are significantly non-Keplerian even if P2 and P1 have negligible masses. We present an analytic theory, with P2 and P1 treated as test particles, which shows that the motion can be represented by the superposition of the circular motion of a guiding center, the forced oscillations due to the non-axisymmetric components of the potential rotating at the mean motion of Pluto-Charon, the epicyclic motion, and the vertical motion. The analytic theory shows that the azimuthal periods of P2 and P1 are shorter than the Keplerian orbital periods, and this deviation from Kepler's third law is already detected in the unperturbed Keplerian fit of Buie and coworkers. In this analytic theory, the periapse and ascending node of each of the small satellites precess at nearly equal rates in opposite directions. From direct numerical orbit integrations, we show the increasing influence of the proximity of P2 and P1 to the 3:2 mean-motion commensurability on their orbital motion as their masses increase within the ranges allowed by the albedo uncertainties. If the geometric albedos of P2 and P1 are high and of order of that of Charon, the masses of P2 and P1 are sufficiently low that their orbits are well described by the analytic theory. The variation in the orbital radius of P2 due to the forced oscillations is comparable in magnitude to that due to the best-fit Keplerian eccentricity, and there is at present no evidence that P2 has any significant epicyclic eccentricity. However, the orbit of P1 has a significant epicyclic eccentricity, and the prograde precession of its longitude of periapse with a period of 5300 days should be easily detectable. If the albedos of P2 and P1 are as low as that of comets, the large inferred masses induce significant short-term variations in the epicyclic eccentricities and/or periapse longitudes on the 400-500-day timescales due to the proximity to the 3:2 commensurability. In fact, for the maximum inferred masses, P2 and P1 may be in the 3:2 mean-motion resonance, with the resonance variable involving the periapse longitude of P1 librating. Observations that sample the orbits of P2 and P1 well on the 400-500-day timescales should provide strong constraints on the masses of P2 and P1 in the near future.  相似文献   
29.
30.
A synthesis of Holocene pollen records from the Tibetan Plateau shows the history of vegetation and climatic changes during the Holocene. Palynological evidences from 24 cores/sections have been compiled and show that the vegetation shifted from subalpine/alpine conifer forest to subalpine/alpine evergreen sclerophyllous forest in the southeastern part of the plateau; from alpine steppe to alpine desert in the central, western and northern part; and from alpine meadow to alpine steppe in the eastern and southern plateau regions during the Holocene. These records show that increases in precipitation began about 9 ka from the southeast, and a wide ranging level of increased humidity developed over the entire of the plateau around 8-7 ka, followed by aridity from 6 ka and a continuous drying over the plateau after 4-3 ka. The changes in Holocene climates of the plateau can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Indian Monsoon which expanded northwards  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号